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The Big Questions

• What is a partition?

• What tools do we have to work with?

• What do these tools tell us?
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Combinatorics

Combinatorics is the mathematical discipline of counting
abstract objects.
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A partition λ is a finite non-increasing sequence of positive
integers. The weight of λ is the sum of its integer parts.

(4, 3, 2, 1) (1, 1, 1) () (1000, 999, 17, 4)

The relation λ ` n means “the weight of λ is n”. We also say
that “λ is a partition of n”.
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Counting by List

Let p(n) denote the number of partitions of n. How do we
calculate this number? How quickly does it grow?

Let’s enumerate all partitions of 4. These are

(4) (3, 1)
(2, 2) (2, 1, 1)
(1, 1, 1, 1).

Therefore, p(4) = 5.
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Here are some values of p(n) for small n.

p(0) = 1 p(5) = 7 p(10) = 42 p(15) = 176
p(1) = 1 p(6) = 11 p(11) = 56 p(16) = 231
p(2) = 2 p(7) = 15 p(12) = 77 p(17) = 297
p(3) = 3 p(8) = 22 p(13) = 101 p(18) = 285
p(4) = 5 p(9) = 30 p(14) = 135 p(19) = 490
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Percy MacMahon (1854 - 1929) was renowned for his work in
enumerating partitions by hand. He developed many
generalizations of partition theory.
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Counting By Picture

Lemma

For all n ≥ 0, we have that p(n) ≤ 2n−1.

Proof
Consider n dots in a row:

◦ ◦ ◦ ◦ ◦ ◦ ◦

There are n− 1 gaps between the dots, where we may choose to
insert a plus sign, giving 2n−1 possible arrangements of n dots
and up to (n− 1) plus signs.

◦+ ◦ ◦ ◦+ ◦ ◦+◦
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In such an arrangement, replace each cluster of j dots by the
integer j.

◦+ ◦ ◦ ◦+ ◦ ◦+◦ 7→ 1 + 3 + 2 + 1

Then, arrange these integer parts into non-increasing order to
produce a partition whose weight is n.

3 + 2 + 1 + 1 7→ (3, 2, 1, 1)

All partitions λ ` n are formed this way, albeit non-uniquely.
Therefore, p(n) ≤ 2n−1.
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Leonard Euler (1707 - 1783) formulated many partition
identities by defining bijections between sets of partitions, and
also by manipulation of generating functions.
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Counting by Bijection

Theorem (Euler)

For all n ≥ 0, the number of partitions λ ` n with distinct parts
is equal to the number of partitions µ ` n with only odd parts.

Proof
Let λ be a partition with distinct parts such that λ ` n.
Perform the following algorithm on λ:

1 If λ contains an even part j, replace j by two parts of size
j/2.

2 Repeat (1) until λ only consists of odd parts.
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For example, let λ = (6, 4, 3, 2)

(6, 4, 3, 2)
(6, 4, 3, 1, 1)

(4, 3, 3, 3, 1, 1)
(3, 3, 3, 2, 2, 1, 1)

(3, 3, 3, 2, 1, 1, 1, 1)
(3, 3, 3, 1, 1, 1, 1, 1, 1)

The corresponding partition is µ = (3, 3, 3, 1, 1, 1, 1, 1, 1).

Each λ corresponds to exactly one µ according to this map,
because the map is invertible. A bijection between two finite
sets demonstrates that they have the same size.
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Corollary (Non-partition version)

Binary representation of non-negative integers is unique.

0 = 0(2)

1 = 1(2)

2 = 10(2)

3 = 11(2)

4 = 100(2)
...

What’s that got to do with partitions?
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Corollary (Partition version)

For all n ≥ 0, there is a unique partition λ ` n consisting only
of parts which are distinct powers of two.

Proof
Given n, there is a unique partition µ = (1, 1, . . . 1) ` n. Note
that µ consists solely of odd parts. Perform the following
algorithm on µ:

1 If µ contains two equal parts of size j, replace the pair by a
single part of size 2j.

2 Repeat (1) until µ only consists of distinct parts.

This produces the unique partition λ as desired.
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Counting by Generating Function

Let a(n) be a sequence defined for n ≥ 0. The generating
function of a(n) is the series

A(q) =

∞∑
n=0

a(n)qn.

Here, q is an indeterminate. These series may be manipulated
in the ring of formal power series C[[q]].

(That is, + and × work as expected.)
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Theorem (Euler Product)

Let

P (q) =
∑
n≥0

p(n)qn = 1 + q + 2q2 + 3q3 + 5q4 + · · · .

Then,

P (q) =

∞∏
i=1

1

1− qi
.
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Proof
Expand each term of the Euler product using the geometric
series formula to obtain

∞∏
i=1

1

1− qi
=

∞∏
i=1

(1 + qi + q2i + q3i + · · · )

=

∞∏
i=1

(1 + qi + qi+i + qi+i+i + · · · ).

For all n ≥ 0, the monomial qn appears once in the product for
each way of writing

qn = qi1+i1+···+i1 × qi2+i2+···+i2 × · · · × qik+ik+···+ik ,

where the ij are distinct integers appearing in decreasing order.
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Each of these representations corresponds to a unique partition
λ = (i1, . . . , i1, i2, . . . , i2, . . . , ik, . . . , ik) ` n. Therefore,

∞∏
i=1

1

1− qi
=

∞∑
n=0

(∑
λ`n

qn
)

=

∞∑
n=0

p(n)qn.

Morrill The Theory of Integer Partitions, I



Corollary

Let d(n) be the number of partitions λ ` n such that λ consists
of distinct parts. Then,

∞∑
n=0

d(n)qn =

∞∏
i=1

1 + qi.

Corollary

Let o(n) be the number of partitions λ ` n such that λ consists
of odd parts. Then,

∞∑
n=0

o(n)qn =

∞∏
i=1

1

1− q2i−1
.
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Theorem (Euler)

For all n ≥ 0, we have that d(n) = o(n).

Proof

∞∏
i=1

1 + qi =

∞∏
i=1

(1 + qi)(1− qi)
1− qi

=

∏∞
i=1 1− q2i∏∞
i=1 1− qi

=

∞∏
i=1

1

1− q2i−1
.

Therefore,
∞∑
n=0

d(n)qn =

∞∑
n=0

o(n)qn.

Because series are uniquely determined by their coefficients, the
two coefficient sequences must be identical.

Morrill The Theory of Integer Partitions, I



Godfrey Harold Hardy (1877 - 1947) studied partitions for their
relationship to complex analysis.
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Srinivasa Ramanujan (1887 - 1920) was a self-taught
mathematician who had a profound intuition for partition
theory.
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Counting by Complex Analysis

More advanced results in partition theory follow from the
treatment of generating functions as analytic series in the
complex plane.

Theorem (Hardy, Ramanujan)

Let p(n) denote the number of partitions of n. Then,

p(n) ∼
exp(π

√
2n/3)

4n
√

3
.

Here, a(n) ∼ b(n) denotes the relation

lim
n→∞

a(n)

b(n)
= 1.
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Ramanujan discovered a pattern in p(n) by observing a table
like the one we saw earlier.

p(0) = 1 p(5) = 7 p(10) = 42 p(15) = 176
p(1) = 1 p(6) = 11 p(11) = 56 p(16) = 231
p(2) = 2 p(7) = 15 p(12) = 77 p(17) = 297
p(3) = 3 p(8) = 22 p(13) = 101 p(18) = 285
p(4) = 5 p(9) = 30 p(14) = 135 p(19) = 490

Note that each p(n) on the bottom row is a multiple of five.

Do you expect this pattern to continue? Do you expect this
pattern to work for a table with more than five rows?
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Theorem (The Ramanujan Congruences)

For all n ≥ 0,

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11).

Since the time of Ramanujan, it has been discovered that p(n)
exhibits other, more complicated congruences for all moduli
coprime to 6.
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Proof Sketch
Consider the generating function for p(5n+ 4),

∞∑
n=0

p(5n+ 4)qn.

It can be shown that

∞∑
n=0

p(5n+ 4)qn = 5
(q5; q)5∞
(q; q)6∞

= 5

∞∑
n=0

a(n)qn =

∞∑
n=0

5a(n)qn.

Therefore, each p(5n+ 4) is equal to a multiple of five. The
other two congruences are proved similarly.
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Freeman Dyson (1923 - 2020) was interested in finding a
simpler proof of the Ramanujan congruences by measuring
statistics of individual partitions.
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Counting by Rank

Let λ be a partition. The rank of λ is an integer equal to the
largest part of λ minus the number of parts which occur in λ.

r(4, 2, 1) = 4− 3 = 1.

Dyson observed that the partitions λ ` (5n+ 4) may be
grouped into subsets of equal size according to their rank
modulo five. He conjectured that this grouping would lead to a
combinatoric proof of the first two Ramanujan Congruences.

Morrill The Theory of Integer Partitions, I



Here are the partitions λ ` 4.

λ r(λ) r(λ) (mod 5)

(4) 3 3
(3, 1) 1 1
(2, 2) 0 0
(2, 1, 1) −1 4
(1, 1, 1, 1) −3 2

Note that each of the residues 0, 1, 2, 3, and 4 occur the same
number of times in the last column.

You might also notice something interesting in the middle
column.
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Arthur Oliver Lonsdale Atkin (1925 - 2008) was a proponent of
using computer assisted calculation to further knowledge of
complex analysis.
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Peter Swinnerton-Dyer (1927 - 2018) was known for his
foundational work in the theory of elliptic curves and
L-functions, both belonging to the field of complex analysis.
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Atkin and Swinnerton-Dyer proved Dyson’s conjecture true in
1954: the size of the sets

{λ ` (5n+ 4) : r(λ) ≡ i mod 5}

do not depend on the residue i. Therefore, all the partitions of
5n+ 4 may be placed into five bins of equal size, which
demonstrates that p(5n+ 4) ≡ 0 modulo 5.

The same two mathematicians proved a similar result
connecting ranks and the modulo 7 congruence.
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Dyson was aware that the rank method fails to establish
Ramanujan’s modulo 11 congruence. (Try it yourself on the
partitions of 6 and see what goes wrong!)

He further conjectured that another function would fill this gap.
Dyson named this function the crank of a partition, but did
not supply a formula for it.

A working definition of the crank function was later established
by Frank Garvan and George Andrews.
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George Andrews (1938 - ) has been a leading figure in the
theory of partitions through the 20th century and continues to
publish today.
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Frank Garvan (1955 - ) is another leading figure in the theory of
partitions. He maintains a software suite for computer
calculation of generating series at qseries.org.
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Counting by Crank

Let λ be a partition. If λ does not contain any parts of size 1,
then the crank of λ is defined to be equal to the largest part of
λ.

Otherwise, define w(λ) > 0 to be the number of parts of size 1
which occur in λ. Then define m(λ) to be the number of parts
of λ which are greater than w(λ) in size. In this case,
c(λ) = m(λ)− w(λ).

c(5, 4, 2) = 5

c(5, 4, 1) = 2− 1 = 1
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This strange looking formula comes from starting with the series

∞∏
i=1

1− qi

(1− zqi)(1− qi/z)

and reverse-engineering what its coefficients are counting.

Theorem (Andrews, Garvan)

For all n ≥ 0, the size of each of the sets

{λ ` (5n+ 4) : c(λ) ≡ i mod 5}
{λ ` (6n+ 5) : c(λ) ≡ i mod 7}
{λ ` (11n+ 6) : c(λ) ≡ i mod 11}

does not depend on the choice of residue i. Therefore,
enumeration via the crank function is sufficient to establish all
three Ramanujan congruences.
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Conclusion

This talk represents only a tiny portion of the past 300 years of
research into integer partitions. Please join me again in the
near future when I discuss more of these results, including my
own contributions to the field.

Thank You!
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